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We discuss some of the difficulties that have been mentioned in the literature in
connection with the Bethe ansatz for the six-vertex model and XXZ chain, and
for the eight-vertex model. In particular we discuss the ‘‘beyond the equator,’’
infinite momenta and exact complete string problems. We show how they can be
overcome and conclude that the coordinate Bethe ansatz does indeed give a
complete set of states, as expected.
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1. INTRODUCTION

There are proofs in the literature of the combinatorial completeness of the
Bethe ansatz (1) for the six-vertex model and XXZ chain: (2, 3) i.e., that for a
lattice of N columns it gives all 2N eigenvectors (states) of the transfer
matrix. In the presence of an arbitrary field H there seems to be no doubt
that this is so, and this is in agreement with the results of the numerical
experiments we report in Section 2. Other studies have been made, also
indicating the completeness of the Bethe ansatz. (4–8)

Even so, there still appear papers that either question this complete-
ness, or at least appear to question it, when the field is zero, or at special
values of the crossing parameter l (or g). Statements have been made that
‘‘the Bethe vector vanishes’’ for states with more down arrows than up
arrows, (9, 10) and that it is incomplete or ‘‘singular’’ if some of the momenta
are infinite. (11–13) Here we show that these problems can be overcome in the



coordinate Bethe ansatz if one recognizes that one is dealing with a set of
algebraic equations, so must include an appropriately generalized ‘‘point at
infinity’’ in one’s considerations, and properly normalize the eigenvector.

Recently it has been claimed that ‘‘Bethe’s equation is incomplete’’ at
special ‘‘roots of unity’’ values of l. (14–17) By this it is meant that the Bethe
zeros v1,..., vn, or equivalently the Bethe momenta k1,..., kn, are not uniqely
defined. They contain at least one exact complete string, and one is free to
choose each string centre at will.2 This freedom is noted in ref. 17, after

2 Except that if H=0, N is even and n=N/2, then one can require that the eigenvector g also
be an eigenvector of the arrow reversal operator R and that v1,..., vn satisfy the constraint
(151).

Eq. (1.35) therein. We show that this freedom is because the eigenvalue is
degenerate, so the eigenvector itself is not uniqely defined. Any allowed
choice of v1,..., vn gives a valid eigenvector. The set of such choices is a
curve in the eigenspace. For the simplest case, which is when v1,..., vn form
just one single string, we show that the vectors on this curve span the
eigenspace. Thus the Bethe ansatz is complete for this case, precisely
because of this lack of uniqueness. We fully expect this argument to
generalize to more complicated cases.

In all the cases we have looked at, we have found that the Bethe
ansatz is indeed complete: it gives all the eigenvectors (states). More preci-
sely, it can be used to construct a basis for each eigenspace.3

3 This contradicts the statement in the abstract of ref. 15, and repeated in the introduction of
ref. 18, that ‘‘the Bethe ansatz equations determine only the eigenvectors which are the
highest weights of the infinite dimensional sl2 loop algebra.’’

Apart from the difficulty mentioned in Section 6, the problems we
encounter can be resolved by the methods mentioned after Eq. (46) and
reviewed in the summary.

We also present the coordinate Bethe ansatz equations for the eight
vertex model in zero field, with an even number of columns, and discuss
how the infinite momenta and exact complete string problems can be
resolved. We expect these equations to be similarly complete.

We further show that the functional relation between the eigenvalues
T(v), Q(v) of the T and Q matrices can itself be written as a generalized
eigenvalue problem, with the Fourier coefficients of Q(v) being the ele-
ments of the eigenvector.

In one sense these problems have to be resolvable, since if the ansatz is
complete for arbitrary field H and crossing parameter l, then (at least in
principle) one can always deal with difficult cases by taking a limit. (When
l is real or pure imaginary, and the field H is zero or pure imaginary,
then one can choose the spectral variable v so that the transfer matrix is
hermitian, so we know it is diagonalizable. Since the eigenvectors are
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independent of v, this means that it is diagonalizable for all v.) However, the
question is whether one can do better than this and find all the eigenvectors
for any particular values of H and l. For the problems that have been
addressed in the literature, we believe the answer to be yes.

2. THE SIX-VERTEX MODEL IN A FIELD

The six-vertex model (19–27) has Boltzmann weights w1,..., w6. Let

R++=R
w1 0
0 w4

S , R+−=R
0 0

w6 0
S

R−+=R
0 w5

0 0
S , R− −=R

w3 0
0 w2

S
(1)

Let s=s1,..., sN denote the state of a row of N vertical arrows (+1
for an up arrow, −1 for a down arrow). Then the transfer matrix for a
lattice of N rows is the 2N by 2N matrix T with elements

Ts, sŒ=Trace Rs1, s −1Rs2, s −2 · · ·RsN, s −N (2)

Considered as a function of w1,..., w6, it has the symmetries:

T(w1,..., w6)=(−1)N T(−w1,..., −w6)=T t(w4, w3, w2, w1, w6, w5) (3)

the superfix t denoting transposition.
In statistical mechanics one wants to calculate the partition function

Z=Trace TMr (4)

where Mr is the number of rows of the lattice. It is therefore desirable to
diagonalize the matrix T. This problem has been solved (for general values
of w1,..., w6) by the Bethe ansatz. (23–26) 4

4 In fact, ref. 26 is more general yet, considering an inhomogeneous model where the field H
and the rapidity variable v vary from column to column. Here we shall only consider the
homogeneous model.

In the Bethe ansatz one characterizes the state s1,..., sN by the posi-
tions X=x1,..., xn of the down arrows, i.e., sj=−1 iff one of x1,..., xn is
equal to j, else sj=+1. Because of the ‘‘ice rule’’ that there be two arrows
into each vertex, and two arrows out, the number n is conserved, being the
same on all rows of the lattice. For a lattice of N columns, the transfer
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matrix T therefore breaks up into N+1 diagonal blocks, one for each value
of n from 0 to N. Within block n, an eigenvector g has elements g(X)=
g(x1,..., xn) for each state s or X.

The Bethe ansatz is the following guess at the elements of the eigenvector:

g(x1,..., xn)=C
P
A(p1,..., pn) e ikp1x1 · · · e ikpnxn (5)

where the sum is over all the n! permutations {p1,..., pn} of {1,..., n}, and
the integers x1,..., xn lie in the range

1 [ x1 < x2 < · · · < xn [N (6)

Substituting this ansatz directly into the eigenvalue/eigenvector equa-
tions, one finds the following sufficient conditions for g to be an eigenvector:

spj, pj+1A(p1,..., pn)+spj+1, pjA(p1,..., pj+1, pj,..., pn)=0 (7)

e iNkp1A(p2,..., pn, p1)=A(p1,..., pn) (8)

for j=1,..., n−1 and all permutations {p1,..., pn}.
Here

sj, m=w1w3−(w1w2+w3w4−w5w6) e ikm+w2w4e i(kj+km) (9)

We emphasize that (5)–(9) are sufficient conditions (together with
g ] 0) for g to be an eigenvector. They involve the Boltzmann weights only
via the ratios

(w1w2+w3w4−w5w6)/(w1w3) and w2w4/(w1w3) (10)

This implies that the transfer matrices of two models with different weights,
but the same values of these ratios, commute. This can be proved directly
by appropriately extending the method of Section 9.6 of ref. 27, or of
refs. 28 or 29).

The eigenvalue corresponding to this eigenvector is

L=wN1 D
n

j=1

w1w3+(w5w6−w3w4) e ikj

w1(w1−w4e ikj)
+wN4 D

n

j=1

w1w2−w5w6−w2w4e ikj

w4(w1−w4e ikj)
(11)
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If the weights w1,..., w6 are all non-zero, it is convenient to write them as

w1=eH+Va, w2=e−H−Va, w3=eH−Vb

w4=e−H+Vb, w5=w6=c
(12)

Here H is a dimensionless electric field in the horizontal direction; V is the
field in the vertical direction.5

5 The weights w5, w6 are sinks and sources of horizontal arrows, so only occur in the partition
function and transfer matrix in the product combination w5w6. This means that there is no
loss of generality in choosing w5=w6=c.

Defining

D=(a2+b2−c2)/(2ab), e ioj=e−2He ikj (13)

and dividing sjm by a constant factor e2Hab that cancels out of (7), the
above equations involving w1,..., w6 simplify to

sj, m=1−2De iom+e i(oj+om) (14)

L=e (N−2n) V 3eNH D
n

j=1

ab+(c2−b2) e ioj

a(a−be ioj)
+e−NH D

n

j=1

a2−c2−abe ioj

b(a−be ioj)
4 (15)

Note that V enters the above equations only via a factor e (N−2n) V in the
eigenvalue L. This is because of the ice rule: T commutes with the diagonal
matrix Sz which has entries (s1+s2+·· ·+sN) ds, sŒ. The effect of V in the
Boltzmann weights (2) is to pre- and post-multiply T by exp(SzV/2).
Within the diagonal block n, the diagonal entries of Sz are N−2n, so the
effect of introducing V is to merely multiply all entries of T by e (N−2n) V.
Without loss of generality we shall from now on take V=0.

The next step is to derive what Fabricius and McCoy call ‘‘Bethe’s
equation’’ [15, Eq. (1.2)]. This is easily done when the sj, m are all non-zero,
but much of the apparent confusion in the literature arises when some of
them are zero, so we proceed carefully. To be an eigenvector, g must be
non-zero, so at least one of the coefficients A(p1,..., pn) must be non-zero.
In Appendix A we show that this implies that

e iNkj D
n

m=1, m ] j
sj, m=(−1)n−1 D

n

m=1, m ] j
sm, j (16)

for j=1,..., n. Hence these n equations are a necessary consequence of the
linear equations (7) and (8) for the n! coefficients A(p1,..., pn). We discuss
below their sufficiency for the case when all of the sj, m are non-zero.
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Also, substituting all n cyclic permutations of {p1,..., pn} into (8), one
gets n linear homogeneous equations for the n coefficients A that occur.
Since at least one of them is non-zero (for some permutation {p1,..., pn}),
the determinant of coefficients must vanish, giving

e iN(k1+k2+· · ·+kn)=1 (17)

We refer to (5)–(17) as ‘‘the Bethe ansatz equations.’’

Transformation to Difference Variables

Define r, l, v so that

a=r sinh[(l−v)/2]

b=r sinh[(l+v)/2] (18)

c=r sinh l

then

D=−cosh l (19)

Define also v1,..., vn so that

e ikj=e2He ioj=e2H
el−evj

el+vj−1
(20)

Then

si, j=
sinh l sinh[(vi−vj+2l)/2]

sinh[(vi+l)/2] sinh[(vj+l)/2]
(21)

If we define functions f(v), Q(v) by

f(v)=rN sinhN(v/2)

Q(v)=D
n

j=1
sinh[(v−vj)/2]

(22)

then (15) can be written in the form

L=(−1)n
eNHf(l−v) Q(v+2l)+e−NHf(l+v) Q(v−2l)

Q(v)
(23)

6 Baxter



We shall also introduce a parameter q by

q=−el, D=(q+q−1)/2 (24)

This q is the −q of ref. 15.

Commuting Transfer Matrices

In the notation (18)–(19), the ratios (10) that enter the eigenvector
calculation are

2e−2HD and e−4H

Keeping r, l, H fixed, and writing the transfer matrix T as a function
T(v) of v, it follows that

T(v) T(vŒ)=T(vŒ) T(v) (25)

for all v, vŒ. The transfer matrices T(v), T(vŒ) commute.
Further, if we define the Pauli matrices

sxj=R
0 1
1 0
S , syj=R

0 −i
i 0
S , szj=R

1 0
0 −1
S (26)

acting on the spin (arrow) in position j, then the logaritmic derivative of
T(v) at v=−l is a linear combination of the identity operator and the
hamiltonian

H=− 12 C
N

j=1
{coshH(sxj s

x
j+1+syj s

y
j+1)

− i sinhH(sxj s
y
j+1−syj s

x
j+1)+Dszjs

z
j+1}

interpreting suffixes N+1 as 1. Hence T(v) also commutes with this
hamiltonian.

Incrementing v by 2pi is the same as negating all of a, b, c.6 This

6 Remember that w5 and w6 always occur in pairs, so negating c has no effect on T.

merely multiplies T by (−1)N. The lowest and highest powers of ev/2 that
can occur in the expansion of an element of T(v) are −N and N. It follows
that T(v) can be expanded in the form

T(v)= C
N

r=0
Tre (N−2r) v/2 (27)

the coefficients Tr being matrices independent of v.
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The commutation relations (25) imply that T0,..., TN all commute with
one another, and with H.

Hermiticity of T and Unitarity of P

Negating v and H interchanges w1 with w4, and w2 with w3. From (3),
this transposes the transfer matrix T. If l, r are real and H, v are pure
imaginary, or if v is real and r, H, l are pure imaginary, this implies that T
is hermitian. Thus it is diagonalizable. Combining this with the commuta-
tion properties above, it follows that there exists a unitary eigenvector
matrix P such that

P†TrP=diagonal and P†HP=diagonal (28)

In both cases D is real. For these cases, the eigenvalue L must be real.
Since H, v/l are pure imaginary in both, (23) suggests that Q(v+2l)g=
Q(v−2l). From (22), this implies that:

(i) l real: v1,..., vn are either pure imaginary or occur in pairs vj, −v
g
j

positioned symmetrically about the imaginary axis;

(ii) l pure imaginary: v1,..., vn are either real or occur in complex
conjugate pair.

In both cases it follows that the wave numbers k1,..., kn are either real
or occur in complex conjugate pairs. Similarly for o1,..., on.

Note that P is independent of v, so provided H is pure imaginary,
we have proved that T=T(v) is diagonalizable and P is unitary for all
complex v.

Of course, we usually take the Boltzmann weights w1,..., w6 to be
positive real, so from that point of view we would like to take H to be real,
rather than pure imaginary. However, it is reassuring to have a proof that
T is diagonalizable even if the proof only holds when H is pure imaginary.
This does include the ‘‘zero-field’’ case of main interest, as well as other
problems thta have been looked at, such as the critical Potts model with
q < 4.7

7 In Section 6.2 of ref. 30 it is shown that this model is equivalent to a six-vertex model with a
boundary seam. This seam is equivalent to introducing a horizontal field H=h/N, where
q1/2=2 cosh h, so h and H are pure imaginary when q < 4 and the model is critical.

This implies that T will be diagonalizable for all H except posssibly for
isolated non-zero values off the imaginary axis. Our question is: does the
Bethe ansatz give all the eigenvectors?
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The matrix Q̃(v)

Each eigenvalue L must have an expansion corresponding to (27) :

L(v)=C
N

r=0
tre (N−2r) v/2 (29)

Thus L is an entire function of v and the RHS of (23) must vanish when
the denominator does, giving

eNHf(l−vj) Q(vj+2l)+e−NHf(l+vj) Q(vj−2l)=0 (30)

for j=1,..., n.
These are precisely Eqs. (16). The author noted (for H=0) in 1971

that they imply the existence of a matrix Q̃(v) with eigenvalues Q(v) that
commutes with T(v) and satisfies the matrix functional relation

T(v) Q̃(v)=eNHf(l−v) Q̃(v+2lŒ)+e−NHf(l+v) Q̃(v−2lŒ) (31)

where lŒ=l−ip. This proved to be the key to solving the eight-vertex
model. (28, 29)

For the zero-field eight-vertex model an explicit construction for Q̃(v)
is given in Section 6 of ref. 31 and in Section (10.5) of ref. 27.8 This is

8 As we remark in Section 7, there is a typing error in Eq. (10.5.8) of ref. 27: sj+1 therein
should be sj−1.

specialized to the six-vertex model in Eqs. (8), (96), and (97) of ref. 31, for
H=0 and N even.

The vectors Fn(v | s) therein are generalizations of the special eigen-
vectors k we discuss in Section 3. They form the columns of a matrix
Fn(v). Writing [N, m]=N!/(m!(N−m)!), this matrix has [N, n] rows
and [N, N/2] columns. Provided the rows are linearly independent, we can
define the [N, n] by [N, n] matrix Q̃(v) by

Q̃(v) Fn(v0 | s)=Fn(v | s) (32)

v0 being an arbirary fixed parameter, for all n from 0 to N. Then it is
shown in refs. 31 and 27 that

Q̃(v) T(v)=T(v) Q̃(v) (33)

so we can simultaneously diagonalize both T(v) and Q̃(v). Doing this, we
find (for H=0 and N even) that the eigenvalues Q(v) must indeed have
the form given in Eq. (40) below.

Completeness of the Bethe Ansatz for the Six and Eight-Vertex Models 9



In the cases discussed in Section 5, where some of v1,..., vn form one or
more complete strings, the eigenvalue L of T(v) is degenerate. This is
reflected in the fact that the string centres (the average value of the vj
within a string) are not determined by the Bethe ansatz. One of the main
objects of this paper is to stress that this is not a deficiency or ‘‘incomple-
teness’’ of the Bethe ansatz, but rather a strength. It means that it can be
used to construct a complete basis of the eigenspace.

However, the corresponding eigenvalues of Q̃(v) are not degenerate, so
one can fix the string centres by requiring that g in (5) be also an eigenvec-
tor of Q̃(v). This is what Fabricius and McCoy have achieved. In physi-
cist’s terms, they have resolved the degeneracy of the eigenvalue L; in
mathematician’s terms, they have made a particular choice of the basis of
the eigenspace of T(v).

Beyond the Equator: The Relation Between the n and N−n Solutions

As we note below, there appears to be no problem solving these equa-
tions in the presence of a non-zero field H (pure imaginary or real), even
when n > N/2 and there are more down arrows than up. However, the
eignvalues L are then the same as the mirror case (where all arrows are
reversed), with nQN−n and HQ −H. Is there a relation between the
two solutions?

This problem has been studied by Bazhanov et al. (32, 33) Consider
Eq. (23) for some n and H, with a function Q1(v)=Q(v), and the same
equation with n, H replaced by N−n, −H, with a different function
Q2(v)=Q(v) but the same L. Eliminate L between the two equations. We
obtain

W(v+l)=W(v−l) (34)

where the ‘‘Wronskian’’W(v) is defined by

W(v)=
eNHQ1(v+l) Q2(v−l)−(−1)N e−NHQ1(v−l) Q2(v+l)

f(v)
(35)

We continue to require that Q1(v) and Q2(v) be of the form (22), with
n replaced by n, N−n, respectively. It follows that

W(v+2pi)=W(v) (36)

For arbitrary l, excluding the ‘‘root of unity’’ cases discussed in
Section 5 in which il is a rational fraction of p, the only solution of both
(34) and (36) is that W(v) be a constant D. Hence for non-‘‘root of unity’’
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cases, Q1(v) (with parameters n, H), and Q2(v) (with parameters N−n,
−H) must satisfy the relation

eNHQ1(v+l) Q2(v−l)−(−1)N e−NHQ1(v−l) Q2(v+l)=Df(v) (37)

For H=0, this is Eq. (47) of ref. 10. We shall discuss it further below,
particularly for the case when H=0 and N is even.

Pronko and Stroganov (10) have also addressed this problem, in a dif-
ferent manner. Using their terminology, we shall show in Section 4 that it is
indeed interesting, and perfectly possible, to consider Bethe’s equations ‘‘on
the wrong side of the equator.’’

Bethe’s Equation as a Generalized Eigenvalue Problem

We can write (23) as

L(v) Q(v)=(−1)n {eNHf(l−v) Q(v+2l)+e−NHf(l+v) Q(v−2l)} (38)

and f(v), Q(v) as

f(v)=C
N

r=0
fre (N−2r) v/2 (39)

Q(v)=C
n

j=0
qje (n−2j) v/2 (40)

Substituting these expansions, together with (29), into the L, Q equation
above, one obtains

C
n

j=0
bi, jqj=0 (41)

where if 0 [ i− j [N,

bi, j=−ti− j+(−1)n elN/2[(−1)N eNHel(i−3j+n−N)+e−NHel(3j− i−n)] fi− j (42)

else bi, j=0. Here i=0,..., N+n.
We see that we have N+n+1 equations for the N+n+1 unknowns

t0,..., tN and q0 : q1 : · · · : qn. These are an alternative form of Bethe’s
equations. They define the eigenvalue L(v) and (usually) the function Q(v).
They are linear in the tj, and homogeneous and linear in the qj. The tj play
the role of a set of ‘‘eigenvalues,’’ qj that of an ‘‘eigenvector.’’

Completeness of the Bethe Ansatz for the Six and Eight-Vertex Models 11



This form of Bethe’s equation has some advantages which we shall
mention as we come to them in the following four sections. In particular,
suppose that we actually know, or have guessed, the eigenvalue L(v), and
hence t0,..., tN. Then the equations are a set of homogeneous linear equa-
tions for q0,..., qN, and can be solved by the standard apparatus of linear
algebra. Let B be the N+n+1 by n+1 matrix with elements bij. Then we
can distinguish three cases:

(1) B has rank n+1: then there are no solutions for q0,..., qn. L(v) is
not an eigenvalue.

(2) B has rank n: there is one solution for the ratios q0 : q1 : · · · : qn.
This presumably means that the eigenvector g is unique: then L(v) is an
eigenvalue with degeneracy one.

(3) B has rank less than n: there is more than one solution for
q0 : q1 : · · · : qn. The eigenvector g is presumably not unique: then L(v) is
an eigenvalue with degeneracy greater than one.

Thus we can use these simple considerations to determine whether a
given eigenvalue is single or multiple.

‘‘Bethe’s Equations’’

There are a huge number of equations in (7): (n−1)×n!/2 homoge-
neous linear equations for the n! coefficients A(p1,..., pn). Fortunately it
seems that they always permit at least one (possible more—this is the
source of some of the misunderstandings in the literature) non-identically
zero solution. This is of the form

A(p1,..., pn)=EPC−1 D
1 [ i < j [ n

tpj, pi (43)

where EP=±1 is the sign of the permutation and the tij must satisfy

tijsji=tjisij (44)

At least one of tij and tji must be non-zero, else the A(p1,..., pn) would all
vanish and g would be the zero vector.

If the sij are all finite and non-zero and the kj are finite, then we can
take tij=sij and choose the normalization factor C to be unity. The
problems discussed in this paper arise when this is not so. (Apart from the
equal vj difficulty touched on in Section 6.) For these cases one should
choose C so that the maximum term in the summand in (5) is finite and
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non-zero (say unity). This maximum is to be taken over all permutations P
and all values of x1,..., xn allowed by (6).

This is the solution given in (8.4.10) of ref. 27, except that there we
took tij=sij for all i, j. We wish to be more general here so as to cope with
the situation when some of the sij vanish.

Substituting (43) into (8), we obtain the n equations

e iNkj=(−1)n−1 D
n

m=1, m ] j
tm, j/tj, m (45)

for j=1,..., n. Together with (44), this implies (16).
We remind the reader of Eq. (14), namely

sij=1−2De iki −2H+e i(ki+kj)−4H (46)

We refer to (44)–(46) as ‘‘Bethe’s equations,’’ which is a slight exten-
sion of the terminology of Fabricius and McCoy [15, Eq. (1.2)]. They are
sufficient conditions for (7) and (8) to have a non-zero solution for the
coefficients A(p1,..., pn). They form a set of coupled equations for the
e ikj, sij and the ratios tij : tji.

Apart from Section 6, the problems we shall be discussing occur when
some of these variables are zero or infinite. The resolution is always to re-
express (5) and (43)–(45) in terms of finite combinations of powers of the
variables e ikj and tij, to solve the equations simultaneously for these, and to
allow for the possibility of a solution containing one or more arbitrary
degrees of freedom.

Momentum

When v=−l, e (2n−N) HT(v)/cN is the matrix with entries
< i d(si, s

−

i+1). It shifts all arrows one column to the right. Doing this to
the eigenvector g is equivalent to multiplying g by exp[i(k1+·· ·+kn)].
Similarly, the matrix e (N−2n) HT(l)/cN shifts all arrows one to the left.
Hence, writing L as L(v),

e (2n−N) HL(−l)/cN=cNe (2n−N) H/L(l)=e i(k1+· · ·+kn)

and e i(k1+· · ·+kn) must be an Nth root of unity, in agreement with (17). From
(23) it follows that

e i(k1+· · ·+kn)=e2nHQ(l)/Q(−l) (47)
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Numerical Calculations

Method

To fix our ideas, we conducted a number of numerical experiments on
the above equations for lattices of small size: up toN=8. We fixedH, l and
r and evaluated the matrix coefficients Tr in (27). We then assigned v an arbi-
trary value and diagonalizedT(v) directly to obtain the eigenvector matrix P,
and verified that it did indeed diagonalize all the Tr. For each eigenvalue L

this gave us the coefficients tr in (29). We constructed the matrix B and
determined its null space, and hence all solutions of (41) for the qj. This gave
us the function Q(v). We calculated its zeros to obtain the vj from (22). We
then calculated the oj and the wave numbers kj from (20), and then the sij
from (46). Usually the sij were all non-zero and we took tij=sij, and cal-
culated the coefficientsA(p1,..., pN) from (43) and the elements of g from (5).
Finally we normalized this vector (so its largest element was one) and
compared it with the correspondingly normalized column of the matrixP.

Results for H ] 0

We first took H to be non-zero, either real or pure imaginary, and l to
also be either real or pure imaginary. At this stage we avoided the ‘‘roots of
unity’’ cases when il is a rational fraction of p. We encountered no
problems with the above procedure. For a given number n of down arrows,
we found no eigenvalues of T(v) that were identically degenerate for all v.9

9 Obviously they can be degenerate for special values of v: if v=±l, then c−NT(v) is the
‘‘momentum’’operator that shifts all arrows in a row one column to the right (or one to the
left) and has eigenvalues which are Nth roots of unity.

The column nullity of B was always 1, so there was only one solution (to
within normalization) of (41) for the qj. The sij were all non-zero and the
wave numbers ki were all distinct so that (5) gave a unique non-zero
eigenvector. We worked to about 17 decimal digits of accuracy, and the
error in the eigenvector elements was no bigger than 10−13.

For H pure imaginary, we also observed that the eigenvector matrix P
was unitary, that for every vj there was a conjugate according to the rule
given after Eq. (28), and that the wave numbers k1,..., kn were either real or
occurred in complex conjugate pairs. The functions Q1(v), Q2(v) had
n, N−n finite zeros respectively, and satisfied (37).

3. PARTICULAR VALUES OF H,l: SOME VERY SPECIAL EIGENVECTORS

Here we consider the case when H, l satisfy the relation

(−el±2H)N=1 (48)
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and show that the Bethe ansatz then admits some some very special eigen-
vectors. They are the analogues of the special eigenvectors of the zero-field
eight-vertex model obtained by the author in Section 7 of ref. 31.

Almost the simplest ansatz one can imagine for an eigenvector k of the
2N by 2N transfer matrix T(v) is the direct product form

k=R 1
g1
S é R 1

g2
S é · · · é R 1

gN
S (49)

where g1,..., gN are some parameters to be determined.
Define q by (24): q=−el, and let

q̃=q ±1 (50)

making one of the two possible sign choices here and in the following
equations.

Following the method of Section 9.8 of ref. 27, we find that T(v) k has
a simple structure if

gj=(e2Hq̃) j g for j=1,..., N (51)

except that we need the cyclic boundary condition gN+1=g1: this implies

(e2Hq̃)N=1 (52)

which is (48). The parameter g is arbitrary: we can choose it at will. Hence
we can regard k as a function k(g) of g.

Then we find that

T(v) k(g)=wN1 k(gŒ)+wN4 k(gœ) (53)

where

gŒ=q̃g, gœ=q̃−1g (54)

Now look at the sub-space with n down arrows and Sz=N−2n. Then
k(g)=gnfn, where, in terms of the positions x1,..., xn of the down arrows,
fn is a vector with entries

fn(x1,..., xn)=(q̃) (x1+· · ·+xn) (55)
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In this sub-space (53) becomes

T(v) fn=(aNeNHq̃n+bNe−NHq̃−n) fn (56)

Thus fn is an eigenvector of T(v), with eigenvalue

L=aNeNHq̃n+bNe−NHq̃−n (57)

This is true for all n from 0 to N, provided only that the restriction (48), or
more specifically (52), is satisfied.

Reconciliation with the Bethe Ansatz

How can we reconcile this with the Bethe ansatz? Simply by taking

vj Q +. for j=1,..., n (58)

Then, from (20),

e ikj Q e2Hq̃ for j=1,..., n (59)

so all the exponential factors containing x1,..., xn in (5) are proportional to
fn(x1,..., xn) and

g3 fn (60)

Also, from (22) and (23), we obtain the result (57) for the eigenvalue L.
It would seem that there is nothing more to say: the vector fn is a

special case of the Bethe ansatz when all the vj tend to +.. The eigenvalue
is given by (23).

However, the alert reader will notice that we have said nothing about
Bethe’s equations. More seriously, all the kj are finite and equal. This is a
potential problem in itself, since a casual inspection of (44) suggests that
it implies that ti, j=tj, i for all i, j from 1 to n. If we then take A(P) to be
given by (43) and substitute into (5), all terms will be equal except for the
sign factor EP. They will therefore all cancel and we shall obtain g=0. (We
return to the general problem of what happens when ki=kj, si, j=sj, i ] 0
for some pair of values i, j, in Section 6.)

However, e ioj=q̃, so from (14) and (24),

sj, m=0 for all j, m (61)

At first sight this appears to only make matters worse. If we use the
‘‘normal’’ solution of (44), namely tj, m=sj, m, then (43) gives A(P)=0.
Now each term in (5) vanishes, not just their sum!
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The answer is of course that one should not use this solution. In fact
there is now no reason to use the subsidiary ‘‘ansatz’’ (43) at all. For any
finite choice of coefficients A(P), Eqs. (7) are satisfied simply because the
sj, m vanish. All that remains is to satisfy (8). One simple choice that does
this is to take

A(P)=1 (62)

for all permutations P. From (52) and (59),

e iNkj=1 (63)

so both (7) and (8) are satisfied and (5) becomes

g(x1, ...xn)=n! e ik(x1+· · ·+xn) (64)

where k=k1=·· ·=kn. Apart from the non-zero normalization factor n!,
this is the result (55).

These special eigenvectors are a good illustration of how one can
satisfy the original Bethe ansatz equations when some of the si, j vanish.
The form (43) is not part of the original ansatz, but an addition to it. It is a
necessary consequence of (7) if all of the si, j are non-zero, but if enough of
them vanish it ceases to be necessary.

Still, if (43) is true in general we should not be too ready to abandon it
in particular. We can still take A(P) to be given by (43). Equation (44) now
imposes no restriction on the ti, j, but (45) does. For the case that we are
discussing in this section, a simple solution of (45) that avoids the problems
that occur when ti, j=tj, i is to take ti, j=−tj, i ] 0 for all i, j. Then A(P) is
independent of P and we regain the solution just discussed.

Another solution can be obtained, under the more specialized condi-
tions (92) and (93), by letting the vj in Section 5, for the case M=n, tend
to +..

More generally, we can take the tij to be arbitrary and non-zero, with
tij ] tji, for 1 [ i, j [ n−1, and then use (45) to determine the ratios
tj, n/tn, j.

In all three approaches, note that we use (45), rather than (44), to
determine some of the ratios tij/tji. This is a basic feature of the algebra of
the next two sections.

Infinite vj s: The General Situation

Suppose just r of the v1,..., vn equal −., s equal +., and the
remaining n−r−s are finite and arbitrary. More precisely:
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vj=finite, for j=1,..., n−r−s

vj=−., e ioj=q, for j=n−r−s+1,..., n−s (65)

vj=+., e ioj=q−1, for j=n−s+1,..., n (66)

Let us call these three cases type 1 to type 3, respectively. From (14)
and (24), if vj is of type 2 and vm is not of type 2, then

sjm=(q−e ikm)/q, smj=−q(q−e ikm) (67)

so smj/sjm=tmj/tjm=−q2. Similarly, if vj is of type 3 and vm is not of
type 3, then smj/sjm=tmj/tjm=−q−2.

If vj and vm are both of type 2, or both of type 3, then sjm=smj=0 and
A(P) is not necessarily given by (43). Strictly, we should go back to the
original Bethe ansatz equations (7) and (8).

However, for similar reasons to those above, it seems that we can
without loss of generality take A(P) to be given by (43), so long as we
realise that (44) no longer defines tjm/tmj for vj and vm both of type 2, or
both of type 3. Then (7) gives Eq. (45). Taking vj to be of type 1, 2 or 3, we
obtain

e iNkj=q2s−2r D
n−r−s

m=1
(−sm, j/sj, m), j=1,..., n−r−s

e2NHqN=q2n−2r D
n−s

m=n−r−s+1
(−tm, j/tj, m), j=n−r−s+1,..., n−s

e2NHq−N=q2s−2n D
n

m=n−s+1
(−tm, j/tj, m), j=n−s+1,..., n

(68)

where all three products exclude the value m=j.
Taking the product of each of these three equations over the allowed

values of j, the −sm, j/sj, m, −tm, j/tj, m factors cancel out, leaving

e iN(k1+· · ·+kn−r−s)=q2(s−r)(n−r−s)

e2NrH=qr(2n−2r−N), e2NsH=q s(N+2s−2n)
(69)

EliminatingH gives

q2rs(N+r+s−2n)=1 (70)
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so we see that such infinite zeros can only occur when r, s or N+r+s−2n
vanishes, or when q (and e2H) is a root of unity.

Let Q̂(v) be given by (22), but with the product restricted to the finite vj:

Q̂(v)= D
n−r−s

j=1
sinh[(v−vj)/2] (71)

then, to within factors independent of v,

Q(v)=e(r−s) v/2 Q̂(v) (72)

Substituting into the eigenvalue equation (23), we obtain

L=(−1)n
wf(l−v) Q̂(v+2l)+w−1 f(l+v) Q̂(v−2l)

Q̂(v)
(73)

where

w=eNH(−q) r−s (74)

Hence

w2r=qr(2n−2s−N), w2s=q s(N+2r−2n)

and we see that if r, s, N+r+s−2n are all non-zero, then w must be a root
of unity.

4. THE ZERO-FIELD MODEL: H=0

The next step was to turn off the field, setting H=0. For N odd no
problems appeared: we were able to calculate all the eigenvectors in all the
subspaces n=0,..., N without difficulty. For N even we encountered two
problems, both of which have been discussed previously in the literature.

‘‘Beyond the Equator’’: N Even and n > N/2. Q(v) Has Infinite Zeros

In this ‘‘beyond the equator’’ case, (10) (37) has the simple solution

Q2(v)=Q1(v) (75)

Certainly (41) permits this solution, and we observe numerically that B
has nullity one, so it is the only solution. Hence Q(v) is the same for n as
for N−n. This is quite consistent with (22)—it merely means that 2n−N of
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the zeros have gone off to infinity. This is even easier to see in (40): the
first n−N/2 coefficients qj vanish, as do the last n−N/2 coefficients. The
degree of the Laurent polynomial is reduced from n to N−n, which is still
consistent with (41).

From (20) and (24), this means that n−N/2 of the wave numbers
k1,..., kn are given by e ikj=q, and another n−N/2 by e ikj=1/q.

Faddeev and Takhtajan (9) state that ‘‘Bethe’s vector vanishes’’ for
n > N/2. For n=1+N/2 this is certainly not true of the vector g as given
by (5) and (43). We have observed numerically that it is non-zero and that
it is indeed the eigenvector of T.

For n > 1+N/2 there is a problem, but it can be overcome, using the
working at the end of the last section, taking r, s therein to be n−N/2, so
that (69) is satisfied for all l, q. When vj=vm=±., then sm, j=sj, m=0, so
(44) tells us nothing about tm, j, tj, m: instead they should be chosen to satisfy
the last two equations of (68). There will be many ways to do this, corre-
sponding to the fact that A(P) enters (5) only via its sum over all ways of
permuting vN−n+1,..., vN/2 and vN/2+1,..., vn. One simple way is to take
tm, j=−tj, m. The N−n finite zeros vj are given by the first of the equations
(68), which is the same as (45) when n is replaced by N−n, i.e., the Bethe
equations for the right side of the equator. The eigenvalue equations are
the same for both n and N−n.

The eigenvector equations are different, since we must include all n
zeros in the product in (43). The resulting coefficients A(p1,..., pn) are finite
and non-zero. The Eqs. (7) and (8) are satisfied, so the vector g with ele-
ments (5) must be an eigenvector if it is non-zero. It is non-zero in our
numerical experiments, and it is the eigenvector corresponding to the
eigenvalue L.

Thus despite the assertions that have been made in the past, the Bethe
ansatz can be used to construct the eigenvector g for n > N/2, even when
N is even. It is a furphy that Bethe’s ansatz does not work on the wrong
side of the equator.

N Even and 2 [ n [ N−2: A Single Bound Pair

The other problem that we encountered first occurs for N=4 and
n=2, then for even N and 2 [ n [N−2. It is referred to by Bethe himself
[1, after Eq. (23)] and has been considered by others since [11, 13, 34,
Eq. (3.2.23b)]. For some eigenvalues with momentum ±1, i.e., k1+·· ·+kn
=0 or p, we found that Q(v) had a pair of zeros v1, v2 such that v1=l,
v2=−l. From (20) this implies that

e ik1=e−ik2=0 (76)
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More strongly, it was always true for such pairs that

e i(k1+k2)=−1 (77)

so from (46),

s12=2De−ik1=. (78)

while s21 vanishes.
Since s12, s21 do not both vanish, we can take as usual t12=s12,

t21=s21.
In fact t21 vanishes strongly as this situation is approached (say by

turning off the field H): from (45),

t21=C21 e i(N−1) k1 (79)

where C21 has a finite non-zero value given by (45).
There is no problem solving Bethe’s equations for the other k3,..., kn

and for C21. In principle one can then substitute these expressions into (43)
and (5) and extract the terms and elements that grow most rapidly as e ik1
vanishes. Choosing C as stated after (44), each term in the summand of (5)
will give a finite contribution to the eigenvector g. Some will be zero, but
our numerical experiments indicate that the total vector g is not zero, and
is in fact the correct eigenvector.

Numerical Results

For our numerical experiments, we simply assigned e ik1 the numeri-
cally small but non-zero value 10−14i (the i being necessary for k1, k2 to be
complex conjugates), calculated the sij other than s21 from (46), then cal-
culated s21 from (45), substituted the results into (43) and (5) and nor-
malized the vector g. We obtained the correct eigenvector to approximately
14-digit accuracy.

For N=4 there was just one such eigenvalue L, in the n=2 central
block. For N=6 there was one in the n=2 block, two in the n=3 block,
and one in the n=4 block. For N=8 there were 1, 2, 5, 2, 1 in the
n=2, 3, 4, 5, 6 blocks, respectively. This suggests (tentatively) that the
Catalan numbers may count such eigenvalues. The momenta were −1,
except for a single eigenvalue with momentum +1 in each block with
3 [ n [N−3.

When N/2+1 < n < N−1, there are eigenvalues where the two
problems we have just discussed occur together, i.e., more than one of the
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e ikj are equal to q, more than one to 1/q, and two of the others are ±i..
The above procedures were built into our computer program and worked
perfectly, giving the correct non-zero eigenvector of T.

For N even, we also calculated the matrix Fn(v) of Eq. (96) of ref. 31.
We found that its rows were, as expected, linearly independent, so we were
able to use (32) above to calculate Q̃(v), and did indeed find that this
matrix was diagonalized by the same matrix P that diagonalizes T(v), and
that each eigenvalue was the function Q(v) discussed above (more preci-
sely, the eigenvalue was Q(v)/Q(v0)).

The main lesson from this and the previous section is that Bethe’s
equations should be viewed as a set of coupled non-linear equations for the
e ikj, sij and the ratios tij : tji. We do not necessarily proceed by solving (46)
and (44) for the ratios tij : tji. For some i and j it may be appropriate to
obtain this ratio from (45).

5. H=0 AND q A ROOT OF UNITY: EXACT COMPLETE STRINGS

Now we come to the case discussed by Deguchi, Fabricius and McCoy
in refs. 14–17, where l is a rational fraction of ip, i.e., there exist integers
n, M (with no common factors) such that

l=inp/M, q=−e inp/M (80)

using (24).
Then

q2M=1 (81)

and there is no smaller integer power of q2 that equals one.
For the moment we allow H to be arbitrary: we shall show that the

further restriction (91) is necessary for a string (more precisely, a single
string) to occur, and from then on take H to be zero.

The set of Bethe zeros v1,..., vn may now contain one or more
‘‘complete strings,’’ in whichM of them, say v1,..., vM, are related by

vj=v1+2(j−1) l for j=1,..., M (82)

This implies that vj+1=vj+2l and v1=vM+2l−2inp, so from (21),

s12=s23=·· ·=sM−1, M=sM, 1=0 (83)

We see that some of the sij vanish, so we have to be careful with Bethe’s
equations.
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The set {v1,..., vM} may of course contain more than one complete
string. For simplicity, from now on we shall restrict our attention to the
case when there is only one string, but we fully expect our methods and
comments to be applicable to the general case.

For j=1,..., M, Eq. (16) becomes 0=0, which is true, but not helpful.
For j=M+1,..., n, both sides of the equation are non-zero. Using the
form (21) of sij, we obtain

s1, j s2, j · · · sM, j=(−1)M sj, 1sj, 2 · · · sj, M (84)

so for j >M, Eq. (16) simplifies to

e iNkj=(−1)n−1−M D
n

m=M+1, m ] j
sm, j/sj, m (85)

Taking the product of these n−M equations, the sj, m, sm, j factors cancel,
leaving

e iN(kM+1+· · ·+kn)=1 (86)

From (17) it follows that

e iN(k1+· · ·+kM)=1 (87)

Now we note from (82) and (20) that, for j=1,..., M,

e ikj=qe2H
1+q2j−3z1
1+q2j−1z1

(88)

where z1=exp(v1) and more generally

zj=evj=q2j−2z1 (89)

Substituting this into (87) and using (81), we obtain

qNMe2NMH=1 (90)

This is an extra condition on q and H that must be satisfied for a
complete string to occur.10 From this and (81) we see that

10 At least for just one string to occur, but the same condition appears to be necessary for any
number of strings.

e4NMH=1 (91)
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An obvious and interesting solution of this equation is

H=0 (92)

and from now on in this section we shall take H=0, but we do note that
there are other (pure imaginary) values of H for which complete strings
may occur.

If N is even, (90) is implied by (81). If N is odd, the two equations
together imply that qM=1, but this is consistent with q2 being a primitive
Mth root of unity only ifM is odd. Thus we have two possibilities:

q2M=1, N even

qM=1, N andM both odd (93)

Apparent Difficulties: (1) Calculating g

There are two problems that appear when a complete string occurs:
the Bethe equations do not have a unique solution, and if we use the
obvious solution tij=sij of (44) in (43), then every coefficient A(P)
vanishes, so the eigenvector g, given by (5) also vanishes.11

11 The only way the rhs of (43) could be non-zero would be for it to contain the factors
s21, s32,..., sM,M−1, s1, M. But this cannot happen as there is no inverse permutation PŒ such
that p −2 > p

−

1, p
−

3 > p
−

2,..., p
−

1 > p
−

M: the inequalities are inconsistent. At least one of them
must fail, which is the reason for the renormalization of A(P) proposed below.

Let us dispose of the second difficulty first, since it is fairly straight-
forward. For the algebraic Bethe ansatz, it is considered by Fabricius and
McCoy in the remarks after their equation (1.36) of ref. 17.

We can still use the ansatz (43) for the coefficients A(P) and attempt
to satisfy the modified Bethe’s equations (44), (45). Taking tij=sij for all
i, j, we note from (83) that

t12=t23=·· ·=tM, 1=0

For j=M+1,..., n, (45) becomes the above reduced equations (85),
which can be viewed as fixing vM+1,..., vn.

Let v1 be assigned arbitrarily. Then v2,..., vM and e ik1,..., e ikM are given
by (82) and (88).

We still have to satisfy (45) for j=1,..., M. We can do this by using it
to determine the ratios tj−1, j/tj, j+1, for j=1,..., m (with t0, 1=tm, m+1=
tm, 1). We could of course have originally formulated Bethe’s equations
(which are just a set of algebraic equations and may well have solutions at
zero or infinity) in terms of these non-zero, finite ratios.
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We also take C in (43) to be t12. Then some of the coefficients A(P)
will depend on t12, t23,..., tM, 1 only via their ratios, which are given by (45).
The remaining coefficents A(P) will vanish.

Thus all the coefficients are finite, some are non-zero, and we may
hope that the eigenvector g, given by (5), will befinite and non-zero. In our
numerical experiments this is what we have found.

If there are c complete strings, then C should be the product of c

factors tij, being one of the vanishing tij from each string.

Apparent Difficulties: (2) Non-Uniqueness of the Eigenvector

We said above ‘‘let v1 be assigned arbitrarily.’’ Why is this allowed?
Should not its value be determined? This is the problem that concerned
Deguchi, Fabricius and McCoy. (14–17)

The answer is that for any value of v1 the above procedure satisfies
(43)–(45) and therefore the Bethe ansatz equations (5)–(17). Provided g is
not zero (and our numerical calculations indicate that it is not), then it
must be an eigenvector of the transfer matrix T(v). We are free to choose v1
as we wish. There is no a priory need to ‘‘complete’’ Bethe’s equations. (16)

Let us look more closely at what is happening.
From (82) and (22), theM zeros v1,..., vM contribute to Q(v) a factor

D
M

j=1
sinh[(v−vj)/2]3 sinh[M(v−v1)/2] (94)

This factor cancels out of (23), except only for a constant (−1)n.
It follows at once that if Q(v) satisfies (23), and hence the Bethe equa-

tions, then so will any other function Q(v) with a different value of v1.
There is nothing remarkable about this. It means that the matrix B has

rank less than n, so there is more than one solution q0,..., qn of (41). This in
turn is a signal that the eigenvalue L(v) is degenerate, for all v.

Of course, changing v1 will change Q(v), so the matrix Q̃(v) will not be
degenerate. If we construct it explicitly as above, then diagonalizing Q̃(v)
rather than T(v) will resolve the degeneracies of T(v). Further, these will
give the eigenvalues and eigenvectors obtained by taking the limit as l

approaches the value (80). This is what Fabricius and McCoy have done,
and the results are interesting.

What we are concerned with here is showing that there is nothing in
their work that indicates that the Bethe ansatz is incomplete, in the usual
sense of not giving all the eigenvectors or ‘‘states.’’ The fact that Q(v) is not
uniquely defined by (5)–(17) is precisely the reason why one can use these
equations to obtain a complete basis of the eigenspace of the eigenvalue
L(v).
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A Single String Containing all the v1,... , vn

For simplicity we further restrict our attention to the case when all the
v1,..., vn lie in the string, i.e.,

M=n (95)

However, we expect the substance of our remarks to generalize to n >M,
and indeed to the case when v1,..., vn contain more than one string.

The eigenvalue L is given immediately by (23):

L=qn[f(l−v)+f(l+v)]=qn(aN+bN) (96)

To within a sign, it is the eigenvalue for the ‘‘vacuum’’ state, when all spins
are up. We shall now use the original Bethe ansatz equations (5)–(17) to
obtain explicit expressions for all the eigenvectors g corresponding to this
eigenvalue, for a given value of the number n of down arrows. We shall not
use ‘‘Bethe’s equations’’ (43)–(45).

From (82) and (21),

s12=s23=·· ·=sn−1, n=sn, 1=0 (97)

The coefficients A(1, 2,..., n), A(2, 3,..., n, 1),..., A(n, 1, 2,..., n−1)
enter Eqs. (7) only with multiplying factors sij that belong to the set (98).
This means that these coefficients do not enter at all. It appears that all
other coefficients do enter with non-zero multiplying factors, and the
equations ensure that they vanish.12

12 I have only verified this for n=2,..., 9, but this strongly suggests that it is correct.

Choosing A(1, 2,..., n)=1, from (8) it follows that

A(j, j+1,..., n, 1,..., j−1)=e iN(kj+kj+1+· · ·+kn) (98)

From (5) it follows that

g(x1,..., xn)= C
n

j=1
exp {i[k1xn+2−j+k2xn+3−j+·· ·+kj−1xn+kj(x1+N)

+kj+1(x2+N)+· · ·+kn(xn+1−j+N)]} (99)

The cyclic property g(x1,..., xn)=g(x2,..., xn, x1+N) is manifested by (99).
All of the Bethe ansatz equations (5)–(15) are now satisfied. We still

have the parameter v1, or equivalently z1, at our disposal.
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Substituting (88) into (99) and dividing by a common normalisation
factor (1−(−z1/q)n)/n(1+z1/q)N, we obtain

g(z1 | x1,..., xn)=n−1 C
n

j=1
qx1+· · · xn+N(1−j) D

n

r=1
(1+q2j+2r−3 z1)xr+1 −xr −1 (100)

taking xn+1=x1+N and exhibiting the dependence of g on z1.
From (93), qNn=1, which means that the summand in (100) is

unchanged by replacing j by j+n. Replacing j, z1 by j−1, q2z1, we observe
that

g(x2z1 | x1,..., xn)=qNg(z1 | x1,..., xn) (101)

Because of the restrictions (6), the RHS of (100) is a polynomial in z1
of degree N−n. Hence we can expand the vector g and its elements in
powers of z1:

g(z1)= C
N−n

k=0
zk1ck

g(z1 | x1,..., xn)= C
N−n

k=0
zk1ck(x1,..., xn)

(102)

ck being a vector with elements ck(x1,..., xn).
Substituting the expression (102) into (101), we find that

ck=0 unless q2k=qN (103)

This means that most of the ck vanish. Define an integer a by

a=N/2, mod n ifN is even

a=(N−n)/2, mod n ifN, n are odd
(104)

so that in either case 0 [ a < n. Then ck is non-zero only when k=a, a+n,
a+2n,... . It follows that there are at most

N=5N−a

n
6 (105)

non-zero vectors ck in the expansion (102). Here [x] denotes the integer
part of x.
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We can write down an explicit, if unwieldy, expression for the elements
of ck by performing a binomial expansion on each product in (100):

ck(x1,..., xn)=qx1+· · ·+xn C
m1,..., mn

D
n

r=1
q (2r−1) mr Rxr+1−xr−1

mr
S (106)

where k must satisfy the restriction (103) and the summation is over all
integers m1,..., mn such that m1+·· ·+mn=k and

0 [ mr [ xr+1−xr−1, for r=1,..., n

Numerical Tests

It is not obvious whether these vector are in fact linearly independent.
The author knows of no reason to suppose they are not, but as a check we
have numerically calculated the vectors for n=2 and 3. We can distinguish
three cases:

(i) n=2 , l=ip/2, q=−i, qn=−1,

(ii) n=3 , l=ip/3, q=e−2pi/3, qn=1,

(iii) n=3 , l=2ip/3, q=e−pi/3, qn=−1.

For all these cases q2n=1, but only for the second is qn=1. Thus
N must be even for cases (i) and (iii), but may be either even or odd for
case (ii).

We present the results in Table I, for N=2,..., 16. In every case we
calculated the vector g with elements (100) for 12 randomly chosen values
of z1 and then determined (to 15 digit precision) the rank r̃ of the matrix
with these 12 column vectors. We then numerically verified that each was
an eigenvector of the six-vertex model transfer matrix T, with eigenvalue
(96). Finally, we calculated the column nullity ñ of T−LI in the subspace
with n down arrows. This is the degeneracy of L. In every case we found

Table I. The Dimensions of the Space V for n=2 and n=3, as Calculated Numeri-

cally (a Value of Zero Implies that Their Are No Eigenvectors and that (24) Is Not an

Eigenvalue). In Every Case the Result Agrees with (106) and with the Calculated

Nullity of T−LI, Implying that the Vectors (107) Are Indeed Linearly Independent,

and thatV Is the Complete Eigenspace

N 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

case (i) 0 2 2 4 4 6 6 8
case (ii) 0 1 0 1 2 1 2 3 2 3 4 3 4 5 4
case (iii) 0 0 2 2 2 4 4 4
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r̃=ñ=N, where N is given (105). Thus at least for these cases V is
indeed of dimension (105) and contains all eigenstates.

We can compare these results with those of Fabricius and McCoy. (15)

Their c is related to our l by l=ic, so D=−cos c and q=−e ic. From
Table II of their paper, when c=p/2, D=0, n=2 and N=16, there are
eight single strings in the Sz=N/2−n=6 sub-space, all corresponding to
the same eigenvalue. This agrees with the above derivation: a=0, so
N=8 and the summand in (102) is non-zero only when k takes the eight
values 0, 2, 4, 6, 8, 10, 12, 14.

Also, from Table VII of the same paper, when c=p/3, D=−1/2,
n=3 and N=16, there are four equal-eigenvalue single strings in the Sz=
N/2−n=5 sub-space. This also agrees with the above, and with case (ii) in
the table: a=2, N=4, and k=2, 5, 8, 11.

Some of these results have also been obtained by Braak and Andrei, (35)

who refer to the freedom in the choice of the string centres as ‘‘transparent
excitations.’’ Their Table I is line 2 of our Table I above.

Conclusions

Let V be the space that spanned by the non-zero vectors ck. Then as
z1 varies, the eigenvector g(z1) traces a curve within this space. Each vector
ck can be written as a sum of eigenvectors g(z1), so is itself an eigenvector.
V is an eigenspace corresponding to the eigenvalue (96).

It appears that the vectors ck are linearly independent and span the full
eigenspace (within the sub-space Sz=N/2−n of n down arrows). If so,
then V is of dimension N. The eigenvalue has degeneracy N, and we have
used the Bethe ansatz to construct the full eigenspace.

The Case When the String Parameters v1,..., vm Are Infinite

If q satisfies both the restrictions (93) and

qN=1 (107)

then k=0 and k=N−n in (102) both correspond to non-zero vectors ck.
These ck are the values of g when z1=0 and z1=., i.e., when v1,..., vm=
−. and v1,..., vm=+.. We have a string of infinite v1,..., vm.

From (100), we readily find that

c0(x1,..., xm)=qx1+x2+· · ·+xm

cN−m(x1,..., xm)=qm−Nq−x1 −x2 − · · · −xm
(108)

These are particular cases of the special vectors reported in Eqs. (16)–(22)
of ref. 31, in ref. 36, and in Eq. (55) above.
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Multiple Complete Strings: The Function Q(v)

We also calculated the null space of the matrix B in (42), algebraically
using Mathematica. We fixed the values of l and q as in cases (i), (ii), (iii).
We then allowed n (the number of down arrows) in (96) and (29)–(42) to
take all values from 0 to N, for N=2, 3,..., 9. Since L(v) is given by (96),
we could immediately calculate t0,..., tN and form B. We did indeed find
that the column nullity of B was sometimes greater than one. For cases (ii)
and (iii), where −3il is an integer, we found that the nullity was zero
unless n was a multiple of 3, meaning that L(v) was not an eigenvalue.
When n was a multiple of 3 the nullity was (n+3)/3 and (41) was satisfied
provided only that qj was zero when j is not a multiply of 3. Thus

env/2Q(v)=arbitrary polynomial in z3 of degree n/3

where z=ev. Whatever the choices of the coefficients of this polynomial, it
can be factored into n/3 polynomials of degree 1 in z3, each of which is a
complete string.

So Q(v) factors into a product of n/3 complete strings of length 3. The
‘‘centre’’ (the average value of the three vj s in the string) of each string is
undetermined. Any such function Q(v) satisfies (41).

We found corresponding behaviour for case (i), when l=ip/2: for n
even, Q(v) factors into a product of n/2 undetermined complete strings of
length 2. There no solutions for n odd.

We have not attempted to generalize the derivation of this section of
the eigenvector g to such multiple strings, but presume that it can be done,
and that one would find the remarkable binomial pattern of degeneracies
reported by Fabricius and McCoy in their Tables II and VII for ‘‘maxi-
mum Sz=8.’’ (15)

In the 2n=N sub-space one can impose the ‘‘sum-rule’’ constraint
(151) on v1+·· ·+vn. (For non-degenerate eigenvalues, with no strings, this
will automatically be satisfied. If there are strings, it is not necessary,
but may be convenient, and will still give a complete set of eigenvectors.)
If v1,..., vn contain only one complete string, then this condition can be
used to fix its centre. For n=2 or 3, and N=2n, this gives zn1=
(−1) r exp(−n2l). This r is 0 for states symmetric under arrow reversal,
1 for antisymmetric states. We have verified numerically that the resulting
eigenvectors (100) do indeed have this (anti-)symmetry.

6. SOME OF THE v1,..., vn EQUAL

Suppose that all the si, j are non-zero. Then the A(p1,..., pn) are given
by (43). Substitute this into (5) and for the moment regard v1,..., vn as
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arbitrary parameters and x1,..., xn as fixed. The result is an entire anti-
symmetric periodic function of v1,..., vn. It must therefore contain the
factor

D
1 [ i < j [ n

sinh[(vi−vj)/2] (109)

In principle one can divide this factor out (it is the same for all x1,..., xn, so
is just a normalization factor for the vector g). The result is a symmetric
function of v1,..., vn. For instance, if n=2 and N=4, as in (40) we can
write Q(v) as a Laurent polynomial in z=ev:

Q(v)=z−1(dz2+ez+f) (110)

We can then follow this procedure so as to write all the g(x1, x2) as
multinomials in d, e, f. Define

DŒ=2D=q+q−1

t1=q−1d−e+qf

t2=qd−e+q−1f

t3=(d+f) DŒ−2e

t4=−4e(d+f)+(d2+6df+f2+e2) DŒ−df DŒ3

t5=2e(e2−3d2−10df−3f2)+(d+f) DŒ(d2+14df+f2+3e2)

−eDŒ2(2df+e2)−3df(d+f) DŒ3+def DŒ4

then we find that we can normalize the vector g so that

g(1, 2)=t21t3, g(1, 3)=t1t4

g(1, 4)=t5, g(2, 3)=t1t2t3

g(2, 4)=t2t4, g(3, 4)=t22t3

(111)

Each element is a multinomial of degree 3 in the coefficients d, e, f.
Such expressions remove the difficulty that occurs when two or more of
the vj become equal: in that case the anti-symmetric factor mentioned
above vanishes, as does the right-hand side of (5), but the above expres-
sions do not.
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This procedure is equivalent to taking the limit of the ratios of the
eigenvector elements g(x1,..., xn) in (5) as the vj approach one another. It
also has the conceptual advantage of making it clear that one does not
necessarily have to calculate the zeros v1,..., vn of Q(v). Instead one can
imagine solving the bilinear equations given in (29)–(42) for the coefficients
of the Laurent polynomial expansions in ev of L(v) and Q(v), then using
the results in equations such as the above.

Of course, in practice we do not have useful explicit results for the
generalizations of (111) to arbitrary n and N, so for anything other than
small n, N one is forced to use (5) and (43) directly. However, from this
point of view there is nothing remarkable about two of the vj coinciding:
it merely means that Q(v) has a repeated zero. If all one wants is the
eigenvalue L(v), then the alternate form form (29)–(42) of Bethe’s equa-
tions can be used directly as written.

7. EXTENSION TO THE EIGHT-VERTEX MODEL

The zero-field eight-vertex model was solved in 1971 by the
author (28, 29) by extending the functional relation (31) (with H=0) to the
eight-vertex model, provided that

N=even (112)

This restriction applies throughout this section.
This functional relation method gives the eigenvalues L(v), but not the

eigenvectors. In 1972, while at Stony Brook, the author derived equations
for the eigenvectors of the eight-vertex model in a sequence of three
papers. (31, 37, 38) The basic technique was to convert the eight-vertex model to
an ice-type solid-on-solid model, and then to solve this by an appropriately
generalized Bethe ansatz.

Here we use the notation of refs. 31, 37, and 38 and prefix the equa-
tions by I, II, III, according to in which of the three papers it appears.
Papers II and III consider the case when the parameter g satisfies the ‘‘root
of unity’’ condition (I.9), (II.6.8) or (III.1.9), i.e.,

Lg=2m1K+im2KŒ (113)

where L, m1, m2 are integers. This is analogous to (80). This restriction is
not needed in Section 6 of I, because the condition (8) therein is sufficient
to ensure the required cyclic boundary condition from column N to
column 1.
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Papers II and III further consider the case when there are integers ñ, nŒ
such that

N−2ñ=LnŒ (114)

Modified elliptic theta functions are introduced:

H(u)=HJb(u) exp[ipm2(u−K)2/(4KLg)]

G(u)=GJb(u) exp[ipm2(u−K)2/(4KLg)]
(115)

HJb(u), GJb(u) being the usual Jacobi theta functions [Eq. (15.1.5) of ref. 27].
These modified functions are periodic of period 2Lg. The zero-field eight-
vertex model Boltzmann weights are then given by (I.8) and (II.6.1):

a= rG(−2g) G(g−v) H(g+v)

b=−rG(−2g) H(g−v) G(g+v)

c=−rH(−2g) G(g−v) G(g+v)

d= rH(−2g) H(g−v) H(g+v)

(116)

One also uses the functions

h(u)=−h(−u)=H(u) G(−u) (117)

f(u)=[rG(0) h(u)]N (118)

which satisfy

h(u+Lg)=(−1)m1(m2+1) h(u)
(119)

f(−u)=f(u)

h(u+iKŒ)=−e−ipm1(2u+iKŒ)/Lgh(u)
(120)

h(u+2K)=−e2ipm2(u+K)/Lgh(u)

This work was re-derived by Takhtadzhan and Faddeev (39) using the
‘‘Quantum Inverse Scattering Method’’ (QISM). Then in 1982 the author
presented the functional relation method in Sections (10.5) and (10.6) of his
book. (27) An explicit construction (for N even) of the matrix Q̃(v) for the
eight-vertex model is given in Section 6 of ref. 31, and in Section (10.5) of
ref. 27.
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The notation in ref. 27 is slightly different from that in I, II, III and
ref. 39. The restriction (113) is not made, H(u), G(u) are the standard theta
functions, the elliptic integrals K, KŒ are written as I, IŒ, and if we write l, v
therein as lB, vB, then13

13 This still leaves d with a different sign in ref. 27 from that in I, II, III, but since vertices 7
and 8 are sinks and sources of arrows, changing the sign of d does not affect the partition
function or the eigenvalues of the transfer matrix.

lB=2i(K−g), vB=2i(v−K) (121)

As always, there are errors and inconsistencies. This is a good oppor-
tunity to correct two of them.

One is a simple but significant typographical error: j+1 in Eq. (10.5.8)
should be j−1, so that it should read

sj=s+l(s1+·· ·+sj−1) (122)

Equation (10.5.21) is then consistent with (I.78).14

14 Apart from ±i factors that presumably arise because of the negation of d.

The other is an omission (or at least an over-simplification) by the
author in the Bethe ansatz derivation of eigenvectors in papers I–III. In (7)
of ref. 28 each eigenvalue Q(v) of the matrix Q̃(v) is taken to be simply a
product of elliptic theta functions. This is corrected in Eq. (6.10) of ref. 29,
and in (10.6.8) of ref. 27, where an exponential factor is also included, so
that

QB(v)=e2iyv D
N/2

j=1
HJb(v−uj) GJb(v−uj) (123)

where the suffix B is inserted to distinguish this function from that of III,
y and u1,..., uN/2 satisfy

y=p(ŝ−1+N+4pŒ)/8K (124)

u1+·· ·+uN/2=(r̂ŝ−1+4p) K/2−i(ŝ−1+N+4pŒ) KŒ/4 (125)

Here p, pŒ are integers, and r̂=±1 is the eigenvalue of the operator R that
reverses all arrows (or spins), and ŝ=±1 depending on whether the
number of down arrows is even or odd (and S is the diagonal matrix with
entries ŝ). We have used the notation of (10.6.7)–(10.6.8) of ref. 27, except
that we have converted from the v=vB therein to the present v, uj (which
are those of papers I–III) by (121).
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For ñ=N/2, the eigenvalue equation (III.1.21) should be the same as
(10.6.1) of ref. 27. After converting to the notation of III, we find that it is
the same, and is consistent with the other equations (III.1.1)–(III.1.23), if
extra w factors are included in (III.1.14), (III.1.21), (III.1.23) to make them
become

Y=C
L

l=1
C
X

w lf(l | x1,..., xñ) k(l1,..., lN+1) (126)

L=wf(v−g) D
ñ

j=1

h(v−uj+2g)
h(v−uj)

+w−1f(v+g) D
ñ

j=1

h(v−uj−2g)
h(v−uj)

(127)

w−2e iNkj=− D
ñ

m=1
h(uj−um+2g)/h(uj−um−2g) (128)

Here

w=e2pim̃/L (129)

where the integer m̃ is given by

2m̃=m1(ŝ−1+N+4pŒ)+m2(r̂ŝ−1+4p) (130)

The other equations amongst (III.1.1)–(III.1.22) remain unaffected, in
particular e ikj is defined by (III.1.17):

e ikj=h(uj+g)/h(uj−g) (131)

We can still define a function Q(v) by (III.1.24):

Q(v)=D
ñ

j=1
h(v−uj) (132)

but it differs from QB(v) via the exponential factors in (115) and (123).
Then, exhibiting the dependence of the transfer matrix eigenvalue L on v,
(127) can be written as

L(v) Q(v)=wf(v−g) Q(v+2g)+w−1f(v+g) Q(v−2g) (133)

which equation replaces (III.1.25).
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These are in fact the correct equations, not just for ñ=N/2, but
for all ñ satisfying (114).15 We refer to Eqs. (III.1.1)–(III.1.25), with the

15 Except that the restrictions (125), (130) apply only for ñ=N/2, which can be regarded as
the generic case, and not necessarily even then if complete strings are present: we return to
this point later in the section.

replacements (126)–(133), as the corrected eight vertex Bethe ansatz
equations.

There was an omission in the derivation in paper III. Equation
(III.2.2) is correct as written, but in (III.3.1) the author should have
allowed the more general ansatz of including a factor w l in the rhs, where
wL=1. This is equivalent to associating this factor with f(l | x1,..., xñ)
and multiplying the first term on the rhs of (III.2.2) by w, the second by
w−1, and (via the ‘‘wanted terms’’ and the ‘‘unwanted boundary terms’’ of
Section 3 of III) to the introduction of the w factors in (126)–(133).

Precisely these w factors are included in the ñ=0 equations (II.5.6)
and (II.5.7), where g1=f(v+g) and g2=f(v−g). They are also included
in the work of Takhtadzhan and Faddeev. (39) 16

16 Our w is e−2pim/Q in the notation of Takhtadzhan and Faddeev, and it seems that the l of our
equation (126) must be the −l of their equation (5.23).

As Takhtadzhan and Faddeev comment [39, after (5.26)], the origi-
nal equations of paper III appear to apply only for the case when m̃=0.
However, it is better than that. One can verify, for all values of ñ satisfy-
ing (114), using (120), that the corrected eight vertex Bethe ansatz equa-
tions and (130) are unaffected (apart from normalization factors that
merely renormalize the eigenvector Y), by the following simultaneous
substitutions:

u1 Q u1+iKŒ, w Q e−4ipm1/Lw

m̃Q m̃−2m1, pŒQ pŒ−1

Similarly, if u1 is incremented by 2K, then m̃, p are incremented by
2m2, 1, respectively.

The same remarks apply if u1 is replaced by any of the u1,..., uñ.
We can use this freedom, which is simply the choice of period paral-

lelograms for the zeros u1,..., uñ, to increment m̃ by any even integer. If L is
odd, this means that we can construct any choice of w by such shifts; while
if L is even, we can construct half the choices. So the 1973 papers do cover
approximately three-quarters of the cases!

More recently, related equations for the eigenvectors of the eight-
vertex model have been studied by Felder and Varchenko, (41) and by
Deguchi. (42)
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Alternative Form of Bethe’s Equations

From (120) and (132), remembering that N is even,

Q(v+û+iKŒ)=(−1) ñ e−ipñm1(2v+iKŒ)/LgQ(v+û)

Q(v+û+2K)=(−1) ñ e2ipñm2(v+K)/LgQ(v+û)

f(v+iKŒ)=e−ipNm1(2v+iKŒ)/Lgf(v)

f(v+2K)=e2ipNm2(v+K)/Lgf(v)

(134)

where

û=(u1+·· ·+uñ)/ñ (135)

From (116), or from (114) and (133), the function L(v) satisfies the
same quasi-periodicity relations as those above for f(v).

The functions Q(v), f(v), L(v) are all entire. Using the vQ v+2K
quasi-periodicities above, it follows that there exist coefficients qj, fj, tj
such that

Q(v)=e ipñm2(v− û)
2/2KLg C

j
(−1) j qje ipjŒ(v− û)/K

f(v)=e ipNm2v
2/2KLg C

j
fje ipjv/K

L(v)=e ipNm2v
2/2KLg C

j
tje ipjv/K

(136)

where j takes all positive and negative integer values and jŒ=j if ñ is even,
while jŒ=j− 1/2 if ñ is odd.

Now using the vQ v+iKŒ quasi-periodicities, we find that the coeffi-
cients in these series must satisfy

qj+ñ=e−p(2jŒ+ñ) KŒ/2Kqj

fj+N=e−p(2j+N) KŒ/2K fj, tj+N=e−p(2j+N) KŒ/2Ktj
(137)

If q0,..., qñ−1 are known, then the simple periodicity relation (137)
determines all the other qj. Similarly, all the tj are determined by
t0,..., tN−1, and the known fj by f0,..., fN−1.

These series are convergent for all finite v. Substituting them into (133)
and equating coefficients, we obtain

C
.

m=−.
Bj, mqm=0 (138)
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for all integers j, where

Bj, m=−tj−m+e ipm2(8ñ−N) g/2LK[w̃fj−m+m2nŒ+w̃−1fj−m−m2nŒ]

where

w̃=we ip(m+2mŒ−j) g/Ke−2ipñm2û/LK

and mŒ=m if ñ is even, mŒ=m− 1/2 if ñ is odd.
Define

q̄j=epjŒ
2KŒ/2ñKqj (139)

B̄j, m=(−1) j+m epjŒ
2KŒ/2(N+ñ) Ke−pmŒ

2KŒ/2ñKBj, m (140)

Then (138) becomes

C
.

m=−.
(−1)m B̄j, m q̄m=0 (141)

and q̄m, B̄j, m satisfy the periodicity relations

q̄m+ñ=q̄m, B̄j+N+ñ, m+ñ=B̄j, m -m, j (142)

We can therefore define discrete Fourier transforms q̂a, B̂j, a such that

q̄m=C
ñ−1

a=0
e2ipam/ñq̂a, B̂j, a= C

.

m=−.
e2ipam/ñB̄j, m (143)

m, a being integers in the ranges −. < m <. and 0 [ a < ñ. Then (141)
becomes

C
ñ−1

a=0
B̂j, a q̂a=0 (144)

Here j can take any integer value, but from (142)

B̂j+N+ñ, a=B̂j, a (145)

so there is no loss of information in restricting j in (144) to lie in the range

0 [ j < N+ñ

Hence (144) can be regarded as a set of N+ñ homogeneous linear
equations for the ñ unknowns q̂a. It is also linear in the coefficients tj, and
all of these can be determined immediately and linearly from (137) if we
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know t0,..., tN−1. Thus t0,..., tN−1 play the role of generalized eigenvalues,
as t0,..., tN do for the six-vertex model in (41), (42). Since only the ratios of
the q̂a enter the equation, we have N+ñ equations for a total of N+ñ−1
unknowns. Unlike the six-vertex model, this set is over-determined, pre-
sumably because of the quasi-periodicity constraints satisified by the ellip-
tic functions. They must of course have solutions.

Many of the remarks made following equation (38) for the six-vertex
model extend to the eight-vertex model. One can construct an N+ñ by ñ
matrix B with elements B̂j, a, and write (144) as Bq̂=0. Thus B must have
rank at most ñ−1, and q̂ is the column null vector of B.17 If the eigenvalue

17 It is a compication that B depends on û. This disappears if m2=0: possibly it can be
removed for other values by using the periodicity in integer multiples of g (rather than 2K)
as the basis for the discrete Fourier transforms.

L(v) is degenerate (for all v), then the rank of B will be less than ñ−1.
There will then be more than one solution for q̂, and hence of (133) for
Q(v). One can expect such behaviour in the situation that we shall now
discuss, i.e., when Q(v) contains one or more complete strings.

Similarities to the Six-Vertex Model: Strings

The eight-vertex model is a generalization of the zero-field six-vertex
model, and many of the remarks we have made about the six-vertex model
continue to apply. There are still very special eigenvectors with eigenvalues
of the form (57), namely the eigenvectors discussed in papers I and II,
corresponding to ñ=0 in (127). For N even, explicit expressions for the
matrix Q̃ are given in ref. 29 and in Section 10.5 of ref. 27. From these it
follows that each eigenvalue Q(v) is a product of N/2 elliptic h(u) func-
tions, so the only way we can get these simple eigenvalues is for all the
u1,..., uN/2 to be grouped into complete strings. These are of length M,
where

M=L/2 if L is even

=L if L is odd (146)

Each string consists of M zeros, say u1,..., uM, differing sequentially by 2g,
i.e., for j=1,..., M

uj+1=uj+2g (147)

interpreting uM+1 as u1, modulo 2Mg.
In fact any eigenvector and eigenvalue given by (III.1.1)–(III.1.23)18

18 Including the modifications (126)–(128).

with ñ ]N/2, must also be present in the case ñ=N/2, differing from it
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only in the subtraction or addition of complete strings. The eigenvectors
for ñ ]N/2 lie in the eigenspace of any other allowed value of ñ which is
closer to (or equal to) N/2, at least for ñ [N/2.

For any values of L, m1, m2, the condition (114) is satisfied by
ñ=N/2, so this is the generic case. The eigenvalue equations (127)–(131)
then apply for all g. The eigenvector equations, notably (126), depend on g

satisfying (113), but one can approach arbitrarily close to any desired value
by taking L, m1, m2 sufficiently large.19

19 The sum over l in (126) is a discrete Fourier transform: for general values of g it may be
appropriate to replace it by a continuous one.

Other values of ñ only occur if (113) is satisfied forL not greater thanN.
Again, there are technical difficulties about handling Bethe’s equations

when there are complete strings. The remarks of Section 4 extend from the
six-vertex to the eight-vertex model. One should replace (128) by the two
equations

w−2e iNkj= D
ñ

m=1, m ] j
(−tm, j/tj, m) (148)

tj, mh(uj−um+2g)=tm, jh(um−uj+2g) (149)

and write (III.1.20) as

A(P)=EPC−1 D
1 [ j < m [ ñ

tPm, Pj (150)

where the renormalization factor C is the same for all permutations P and
is the product of selected tj, m factors, one from each string, for which
h(um−uj+2g) vanishes.

If uj does not belong to any string, then in (148) we can take
tj, m=h(um−uj+2g). The contribution to the rhs from the um that do lie
within strings cancels out, leaving a reduced equation where j, m only take
non-string values. If uj does belong to a string, say to (147), then
t12, t23,..., tM, 1 vanish but their ratios remain finite. If one fixes one of the uj
within the string, then the rest are determined, the e ikj are given by (131),
and the ratios of t12, t23,..., tM, 1 are determined by (148) for j=1,..., M.
From (150), some of the coefficients A(P) involve t12, t23,..., tM, 1 only via
these ratios, so are finite and non-zero. The other A(P) are of linear or
higher order in t12, t23,..., tM, 1, so vanish.

Again, one is free to vary each of the string centres at will. As one varies
these parameters, and the disposable parameters s, t in III, the eigenvector
Y will trace out a surface S in the eigenspace of the eigenvalue L. If the
eigenvalue is unique, these variations will merely change the normalization.
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If it is degenerate, S will lie in the eigenspace appropriate to this value
of ñ, and we expect the vectors on S to span this eigenspace.

Since the explicit construction of Q̃(v) given in Section 10.6 of ref. 27
gives ñ=N/2, we expect this to be the generic case, giving all eigenvalues
and a complete set of eigenvectors of T(v). For ñ satisfying (114), but not
equal to N/2, one expects to only observe the degenerate eigenvalues, and
to obtain only a sub-space of the eigenspace of each. Recent numerical
results support these expectations. (43)

Of course, one may have particular reasons for fixing the string centres
at particular values, as Fabricius and McCoy did for the six-vertex
model. (14–17) An obvious choice (for ñ=N/2) is to fix them so that Q(v) is
the eigenvalue of the matrix Q̃(v) constructed in Section 6 of ref. 29 and in
Section (10.5) of ref. 27. Equivalently, one can require that they be fixed to
their limiting values (again, for ñ=N/2) as g approaches the ‘‘root of
unity’’ value (113). However, these considerations lie outside the Bethe
ansatz for a fixed value of g. The Bethe ansatz is complete without them:
the arbitrariness in the string centres (and in s, t) is a reflection of the
degeneracy of the eigenvalues of the tranfer matrix, and the resulting non-
uniqueness of the eigenvectors.

The Six-Vertex Model Limit

In the limit when the elliptic modulus k (or the nome q) goes to 0, 1 or.,
the elliptic functions become trigonometric functions and the eight-vertex
model becomes the zero-field six-vertex model. Much of the working of this
section can be adapted at once to the six-vertex model, except that some of
the u1,..., uN/2 may become infinite. In this way the resulting six-vertex
model function Q(v) can have any number n [N/2 of finite zeros, and the
w factors in (127) can be related to those in (73). It should be possible to
obtain all the six-model eigenvalues from the those of the eight-vertex
model by taking such a limit.

There is a problem with the eigenvectors. For n ]N/2, the zero-field
six-vertex model eigenvalues occur in degenerate pairs, one in the sub-space
with n down arrows, the other in the arrow-inverted sub-space with N−n
down arrows. Thus two eight-vertex model eigenvalues, with opposite spin-
reversal symmetry, must coalesce. Their sum and difference will then be the
six-vertex model eigenvectors in the two sub-spaces. Only in the n=N/2
sub-space can one expect to obtain the six-vertex model eigenvectors
directly as limits of those of the eight-vertex model.

The Sum Rule

The constraint (125) applies to the eight-vertex Q(v) functions
obtained by the explicit construction in Section (10.6) of ref. 27, which
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have ñ=N/2 zeros. If the eigenvalue L(v) is non-degenerate, i.e., if there
are no exact complete strings, then Q(v) is uniquely defined by Beth’s
equations, so ñ will be equal to N/2, and (125) will automatically be
satisfied.

However, if there are strings, even if ñ=N/2, then one can shift the
string centres arbitrarily and Bethe’s equations will be unaffected. The
resulting eigenvector will not necessarily be an eigenvector of R and S, and
(125) will not in general be satisfied, but it will nevertheless be a valid
eigenvector of the transfer matrix T(v).

So we conclude that, for all g satisfying (113), a complete set of 2N

eigenvalues and eigenvectors can be obtained by taking ñ=N/2 and
observing the constraint (125) (though even then the eigenvectors will not
necessarily also be eigenvectors of R and S for all values of the string
centres and the disposable parameters s and t (43)). Further eigenvectors can
be obtained by abandoning these constraints, while of course retaining
(114), but these eigenvectors will lie in the eigenspaces obtained with the
constraints, so do not extend these eigenspaces.

These remarks extend to the six-vertex model limit. In the n=N/2 sub-
space, non-degenerate eigenvalues must satisfy the analogue of (125),
which, using (121), is

v1+·· ·+vN/2=ip(rs−1+N+4p)/2 (151)

These v1,..., vN/2 are those of Sections 1 through 6, p is an arbitrary integer,
r the eigenvalue (±1) of the spin reversal operator, and s=(−1)N/2 the
arrow parity of this state, with N/2 down arrows. This is Eq. (17) of
ref. 44, and Eq. (1.44) of ref. 17. Again, if the eigenvalue is degenerate and
v1,..., vN/2 contain one or more complete strings, then (151) will not neces-
sarily be satisfied. I am indebted to Barry McCoy and Klaus Fabricius for
correspondence on this and related matters concerning the Bethe ansatz.

Other Possible Difficulties: Bound Pairs

Because of the double periodicities of elliptic functions, the technical
problems in the six-vertex model associated with zeros v1,..., vn going to
infinity cannot occur in the eight-vertex model: the corresponding u1,..., uñ
can be restricted to a period parallelogram. There appears to be no
‘‘beyond the equator’’ problem. All the states are accounted for by taking
ñ=N/2. The equations may well have solutions for ñ > N/2: this would
correspond to adding complete strings to Q(v).

One could still have bound pairs analogous to (76), when −u1=u2=g,

e ik1=e−ik2=0, e i(k1+k2)=−1 (152)
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and the ratio t21/t12 vanishes. One would expect to handle this in the same
way as for the six-vertex model, using (148) for j=1, 2 to calculate
e iNk1t12/t21 and e iNk2t21/t12, then substituting these into the suitably renor-
malized equations for A(P) and the eigenvector Y.

Although we have not observed the phenomenon, it is conceivable that
two or more of u1,..., uñ, say u1,..., up, could coincide at some arbitrary
value. This would require either generalizing the argument of Section 6, or
first dividing (III.1.16) by the product of h(ui−uj) over 1 [ i < j [ p, and
then taking the limit where u1,..., up become equal.

8. SUMMARY

We have presented the coordinate Bethe ansatz equations with some
care, trying to avoid (or at least signpost) the problems that occur when
some of the variables are zero or infinity. Perhaps the essential point of this
paper is that for the six-vertex model the Bethe ansatz equations are
(5)–(17). It seems that one can always choose the coefficients A(P) to be
given by (43), but this is not necessary if enough of the sij vanish (as they
do when the vj are equal and infinite). All that is necessary for g to be an
eigenvector is that (5)–(17) (or their appropriately renormalized forms) be
satisfied, with g ] 0.

For the six-vertex model, in Section 3 we have discussed the situation
that arises when some of the Bethe zeros vj are infinite, and how this leads
to a reduced Bethe equation containing w factors. In Section 4 we show
that this is the key to resolving the ‘‘beyond the equator’’ problem and to
constructing the Bethe eigenvector for n > N/2. We also show how to cope
with the problem of a bound pair, when two of the momenta are infinite
but their sum is finite (equal to an odd integer multiple of ip).

In Section 5 we look at the problem discussed by Fabricius and
McCoy, when there are one or more exact complete strings. We show that
the vj are no longer uniquely determined, because the string centres can be
chosen at will. Nevertheless, the Bethe ansatz equations are satisfied, and
we show how to construct the (necessarily non-zero) eigenvector by
working with appropriate ratios of the vanishing tij.

In particular, we have found the solutions of the Bethe ansatz corre-
sponding to all the v1,..., vn lying on a single complete string. The Bethe
ansatz equations do not define the string centre (the average of v1,..., vn).
This is to be expected: it is a direct consequence of the eigenvalue L being
degenerate, which means that there is more than one eigenvector, and
hence more than one solution of the Bethe ansatz. We show that the ansatz
can be used to construct a complete set of eigenvectors, spanning the
eigenspace.
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One should of course go on to study more complicated situations,
where there are more than one complete strings, and not all the vj belong
to a string. We expect the above methods to generalize to such cases, but
the algebra may well be complicated.

In all the cases dealt with in Sections 3 to 5, one can always use (5)
(with an appropriate choice of the normalization factor C in (43)) as
written, each term in the summand being finite and the sum being finite
and non-zero. The only ‘‘limit’’ is that of recognizing that one has the set of
rational equations (20), (44)–(46) to solve for the variables evj, e ikj and tij.
Some of these variables may be zero or infinite, while what one wants is
their ratios or some other product of powers, which are finite and non-
zero. These ratios or products can of course themselves be regarded as
variables. This is only a generalization of the usual practice of including the
‘‘point at infinity’’ in the domain of the variables.

In Section 6 we touch on another problem, namely what happens if
two or more of the vj are equal and finite. (The question of what happens
when they are equal and infinite is different, actually easier to resolve, and
is dealt with in Section 3.) In general this case really does seem to demand
that one take a limit in the expression (5) for the eigenvector g, since the
terms in the summand are finite and non-zero but cancel one another in
pairs, so that their sum is zero. This is different from and less satisfactory
than the other cases, but we remark that in fact we never encountered this
case in our numerical experiments, and it is not the case discussed in
refs. 9–17. It is not clear that it ever actually occurs.

In Section 7 we discuss the zero-field eight-vertex model with an even
number of columns, and give the needed corrections to the coordinate
Bethe ansatz equations of Section 1 of ref. 38. We indicate how the string
and infinite momenta problems can occur also for this model, and how to
resolve them.

If one wants to make a specific choice of the string centres, particu-
larly if one wants to ensure continuity as l or g passes through the ‘‘root of
unity’’ value (80) or (113), or (equivalently) if one wants Q(v) to be the
eigenvalue of the matrix Q̃(v) of (86) of ref. 31, or (10.5.31) of ref. 27, then
clearly one should use the results of Fabricius and McCoy. They have
addressed this problem in a series of well-presented papers, and have sys-
tematically exhibited the connections to the sl2 loop algebras. However,
they do use the provocative title ‘‘Bethe’s equation is incomplete... .’’ (15)

If all one wants to do is to diagonalize the transfer matrix (or the XXZ
hamiltonian), obtaining all the eigenvalues, their degeneracies and eigen-
spaces, then it seems that there is no need to look further than the Bethe
ansatz. At least for the cases studied in this paper, the Bethe ansatz is in
fact complete.
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The alternative forms (41), (138) of Bethe’s equations are themselves gen-
eralized eigenvalue equations in which the n+1 or ñ independent coefficents qj
are the elements of the eigenvector. They have some advantages over (44), (45),
(148), (149), being linear in the qj and the tj. The ‘‘infinite vj’’ problem merely
corresponds to some of the coefficients qj vanishing.20 It seems surprising, but

20 But in general one still needs to calculate the zeros vj or uj in order to obtain the eigenvector.

while the author did not believe these equations to be new, he has been unable
to find any previous paper where they have been written down.

APPENDIX A

Suppose for the moment that A(1,..., n) is non-zero. Let am, j be A(Pm, j),
where Pm, j is the permutation where j is removed from its place in the
sequence 1, 2,..., n and replaced immediately after m, or immediately before
m+1. Thus

am, j=A(1,..., m, j, m+1,..., j−1, j+1,..., n) if m < j

am, j=A(1,..., j−1, j+1,..., m, j, m+1,..., n) if m \ j
(A.1)

In particular,

a0, j=A(j, 1,..., j−1, j+1,..., n), aj−1, j=aj, j=A(1,..., n)

an, j=A(1,..., j−1, j+1,..., n, j)

Fix j at some value between 1 and n. Then there are n−1 equations of
the set (7) that involve only the n distinct coefficients a0, j,..., an, j, namely

sm, jam, j+sj, mam−1, j (A.2)

for m=1,..., n, m ] j. Also, from (8) we find that

e iNkjan, j=a0, j (A.3)

Together, these give us n linear homogeneous equations in n unknowns.
Sinceat leastoneof theunknowns,namelyaj−1, j=aj, j=A(1,..., n), isnon-zero,
the determinant of the matrix of coefficients of these n equations must
vanish. This determinant is easily obtained, giving

e iNkj D
n

m=1, m ] j
sj, m=(−1)n−1 D

n

m=1, m ] j
sm, j (A.4)

and this must hold for all the possible values 1,..., n of j.
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Permuting the indices 1,..., n merely rearranges the n equations (A.4),
so our initial assumption that A(1,..., n) is non-zero is irrelevant: to derive
(A.4) it is sufficient that any one of the coefficients A(p1,..., pn) be non-
zero. This must be so for g to be a non-zero vector.
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